Microsecond Molecular Dynamics Simulations of Mg2+- and K+- Bound E1 Intermediate States of the Calcium Pump
نویسندگان
چکیده
We have performed microsecond molecular dynamics (MD) simulations to characterize the structural dynamics of cation-bound E1 intermediate states of the calcium pump (sarcoendoplasmic reticulum Ca²⁺-ATPase, SERCA) in atomic detail, including a lipid bilayer with aqueous solution on both sides. X-ray crystallography with 40 mM Mg²⁺ in the absence of Ca²⁺ has shown that SERCA adopts an E1 structure with transmembrane Ca²⁺-binding sites I and II exposed to the cytosol, stabilized by a single Mg²⁺ bound to a hybrid binding site I'. This Mg²⁺-bound E1 intermediate state, designated E1•Mg²⁺, is proposed to constitute a functional SERCA intermediate that catalyzes the transition from E2 to E1•2Ca²⁺ by facilitating H⁺/Ca²⁺ exchange. To test this hypothesis, we performed two independent MD simulations based on the E1•Mg²⁺ crystal structure, starting in the presence or absence of initially-bound Mg²⁺. Both simulations were performed for 1 µs in a solution containing 100 mM K⁺ and 5 mM Mg²⁺ in the absence of Ca²⁺, mimicking muscle cytosol during relaxation. In the presence of initially-bound Mg²⁺, SERCA site I' maintained Mg²⁺ binding during the entire MD trajectory, and the cytosolic headpiece maintained a semi-open structure. In the absence of initially-bound Mg²⁺, two K⁺ ions rapidly bound to sites I and I' and stayed loosely bound during most of the simulation, while the cytosolic headpiece shifted gradually to a more open structure. Thus MD simulations predict that both E1•Mg²⁺ and E•2K+ intermediate states of SERCA are populated in solution in the absence of Ca²⁺, with the more open 2K+-bound state being more abundant at physiological ion concentrations. We propose that the E1•2K⁺ state acts as a functional intermediate that facilitates the E2 to E1•2Ca²⁺ transition through two mechanisms: by pre-organizing transport sites for Ca²⁺ binding, and by partially opening the cytosolic headpiece prior to Ca²⁺ activation of nucleotide binding.
منابع مشابه
Atomic-level mechanisms for phospholamban regulation of the calcium pump.
We performed protein pKa calculations and molecular dynamics (MD) simulations of the calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase (SERCA)) in complex with phospholamban (PLB). X-ray crystallography studies have suggested that PLB locks SERCA in a low-Ca(2+)-affinity E2 state that is incompatible with metal-ion binding, thereby blocking the conversion toward a high-Ca(2+)-affinity E1 state...
متن کاملSarcolipin and phospholamban inhibit the calcium pump by populating a similar metal ion-free intermediate state.
We have performed microsecond molecular dynamics (MD) simulations and protein pKa calculations of the muscle calcium pump (sarcoplasmic reticulum Ca(2+)-ATPase, SERCA) in complex with sarcolipin (SLN) to determine the mechanism by which SLN inhibits SERCA. SLN and its close analog phospholamban (PLN) are membrane proteins that regulate SERCA by inhibiting Ca(2+) transport in skeletal and cardia...
متن کاملThe selectivity of the Na+/K+-pump is controlled by binding site protonation and self-correcting occlusion
The Na(+)/K(+)-pump maintains the physiological K(+) and Na(+) electrochemical gradients across the cell membrane. It operates via an 'alternating-access' mechanism, making iterative transitions between inward-facing (E1) and outward-facing (E2) conformations. Although the general features of the transport cycle are known, the detailed physicochemical factors governing the binding site selectiv...
متن کاملMolecular Dynamics Simulation of the Melting Process in Au15Ag40 Nanoalloys
In this study the operations of melting of Au15Ag40 nanoalloy have been studied using the molecular dynamic simulations through the Gupta multiparticle potential and the nonergodicity of simulations is eliminated by the multiple histogram method. The melting characteristics are determined by the analysis of variations in the potential energy. The calculations indicate that the melting of Au15Ag...
متن کاملEstimation of the Elastic Properties of Important Calcium Silicate Hydrates in Nano Scale - a Molecular Dynamics Approach
Approximately, 50 to 70 percent of hydration products in hydrated cement paste are polymorphisms of C-S-H gel. It is highly influential in the final properties of hardened cement paste. Distinguishing C-S-H nano-structure significantly leads to determine its macro scale ensemble properties. This paper is dealt with nano-scale modeling. To achieve this, the most important C-S-H compounds, with a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014